Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109612, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705548

RESUMEN

SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.

2.
Dev Comp Immunol ; 156: 105168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522715

RESUMEN

Prohibitin2 (PHB2) is recently identified as a novel inner membrane mitophagy receptor to mediate mitophagy. In the present study, the function of CgPHB2 in mediating mitophagy in response to Vibrio splendidus stimulation was investigated in Crassostrea gigas. CgPHB2 protein was mainly distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the expressions of CgPHB2 mRNA in haemocytes were up-regulated significantly at 6, 12 and 24 h, and the abundance of CgPHB2 protein was also enhanced at 12-24 h compared to control group. Furthermore, the green signals of CgPHB2 were colocalized respectively with the red signals of mitochondria and CgLC3 in the haemocytes at 12 h after V. splendidus stimulation, and the co-localization value of CgPHB2 and mtphagy Dye was significantly increased. The direct interaction between CgPHB2 and CgLC3 was simulated by molecular docking. In PHB2-inhibitor Fluorizoline-treated oysters, the mRNA expressions of mitophagy-related genes and the ratio of mitophagy were significantly decreased in haemocytes of oysters after V. splendidus stimulation. All the results collectively suggested that CgPHB2 participated in mediating the haemocyte mitophagy in the antibacterial immune response of oysters.


Asunto(s)
Crassostrea , Hemocitos , Mitofagia , Prohibitinas , Proteínas Represoras , Vibrio , Animales , Vibrio/inmunología , Vibrio/fisiología , Hemocitos/inmunología , Hemocitos/metabolismo , Crassostrea/inmunología , Crassostrea/microbiología , Mitofagia/inmunología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Vibriosis/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología , Simulación del Acoplamiento Molecular , Inmunidad Innata
3.
Fish Shellfish Immunol ; 145: 109356, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163495

RESUMEN

DM9-containing protein in invertebrates functions as pattern recognition receptor (PRR) to play significant roles in innate immunity. In the present study, a novel DM9-containg protein (defined as EsDM9CP-1) was identified from the Chinese mitten crab Eriocheir sinensis. EsDM9CP-1 is composed of 330 amino acids containing a Methyltransf_FA domain and two tandem DM9 repeats. The deduced amino acid sequence of EsDM9CP-1 shared low similarity with the previously identified DM9CPs from other species, and it was closely clustered with Platyhelminthes DM9CPs and then assigned into the branch of invertebrate DM9CPs in the unrooted phylogenetic tree. The mRNA transcripts of EsDM9CP-1 were highly expressed in haemocytes, gill, and heart. After Aeromonas hydrophila stimulation, the expression levels of EsDM9CP-1 mRNA in haemocytes increased significantly at 3 h (3.88-fold, p < 0.05) and 6 h (2.71-fold, p < 0.05), compared with that of PBS group, respectively. EsDM9CP-1 protein was mainly distributed in the cytoplasm and membrane of haemocytes. The recombinant EsDM9CP-1 protein (rEsDM9CP-1) exhibited binding affinity to MAN, PGN, LPS and Poly (I:C), and also to Gram-positive bacteria (Staphylococcus aureus, Micrococcus luteus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli, A. hydrophila and Vibrio splendidus) and fungi (Pichia pastoris and Metschnikowia bicuspidata) in a Ca2+-dependent manner. It was able to agglutinate A. hydrophila, S. aureus, M. luteus, M. bicuspidata and P. pastoris, and inhibit the growth of A. hydrophila and M. bicuspidate. These results suggested that EsDM9CP-1 in crab not only functioned as a PRR, but also agglutinated and inhibited the growth of microbes.


Asunto(s)
Braquiuros , Staphylococcus aureus , Humanos , Animales , Filogenia , Staphylococcus aureus/metabolismo , Secuencia de Bases , Receptores de Reconocimiento de Patrones/genética , Inmunidad Innata/genética , ARN Mensajero/metabolismo , Braquiuros/genética , Hemocitos
4.
Dev Comp Immunol ; 149: 105063, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37730190

RESUMEN

Galectin-9 is a tandem-repeat type member of galectin family participating in various immune responses, such as cell agglutination, phagocytosis, and autophagy. In the present study, a tandem repeat galectin-9 (defined as CgGal-9) was identified from Pacific oyster Crassostrea gigas, which consisted of two conserved carbohydrate recognition domains (CRDs) joined by a linker peptide. CgGal-9 was closely clustered with CaGal-9 from C. angulata, and they were assigned into the branch of invertebrate galectin-9s in the phylogenetic tree. The mRNA transcripts of CgGal-9 were detected in all the tested tissues, with the highest expression level in haemocytes. The mRNA expressions of CgGal-9 in haemocytes increased significantly after lipopolysaccharide (LPS) and Vibrio splendidus stimulation. The recombinant CgGal-9 was able to bind all the examined pathogen-associated molecular patterns (LPS, peptidoglycan, and mannose) and microbes (V. splendidus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Pichia pastoris), and agglutinated most of them in the presence of Ca2+. In CgGal-9-RNAi oysters, the mRNA expressions of autophagy related genes (CgBeclin1, CgATG5, CgP62 and CgLC3) in haemocytes decreased significantly while that of CgmTOR increased significantly at 3 h after V. splendidus stimulation. The autophagy level and mRNA expressions of autophagy related genes decreased in haemocytes after CgGal-9 was blocked by the corresponding antibody. These results revealed that CgGal-9 was able to bind different microbes and might be involved in haemocyte autophagy in the immune response of oyster.

5.
Dev Comp Immunol ; 147: 104748, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276929

RESUMEN

Autophagy related 16-like (ATG16L) protein is a core autophagy protein, which promotes the extension of autophagosome membrane through microtubule-associated protein light chain 3 (LC3). In the present study, an ATG16L was identified from oyster Crassostrea gigas (defined as CgATG16L1). The full-length cDNA of CgATG16L1 was of 3184 bp with an open reading frame of 1650 bp that encoded a polypeptide of 549 amino acids. There was an ATG5-interacting motif (AFIM) domain, a coiled-coil (CC) domain and seven tryptophan-aspartic acid 40 (WD40) repeats in CgATG16L1. ATG16L1 mRNA was expressed in all the examined tissues with the highest expression in haemolymph (11.22-fold of that in hepatopancreas, p < 0.05). The mRNA expressions of CgATG16L1 in haemocytes increased significantly at 3, 6, 12, 24 and 72 h after lipopolysaccharide (LPS) stimulation, which were 81.15-fold, 24.95-fold, 6.02-fold, 3.90-fold and 5.97-fold (p < 0.05) of that in control group, respectively. The green positive signals of CgATG16L1 protein and the red positive signals of CgLC3 protein were dotted in the cytoplasm of agranulocytes, semi-granulocytes and granulocytes. The co-localization of CgATG16L1 and CgLC3 was observed in haemocytes after Vibrio splendidus stimulation. In CgATG16L1-RNAi oysters, the number of autophagosomes and autolysosomes in haemocytes was reduced. All these results suggested that CgATG16L1 participated in the bacteria-induced autophagy process in the haemocytes of oyster response to bacteria invasion.


Asunto(s)
Autofagosomas , Crassostrea , Animales , Inmunidad Innata/genética , Proteínas/metabolismo , Autofagia , Lisosomas , ARN Mensajero/genética , Hemocitos
6.
Fish Shellfish Immunol ; 138: 108829, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201731

RESUMEN

Mannose-binding lectin-associated serine protease (MASP) is a type of central serine protease in the complement lectin pathway. In the present study, a MASP-like was identified from the Pacific oyster Crassostrea gigas, defined as CgMASPL-2. The cDNA sequence of CgMASPL-2 was of 3399 bp with an open reading frame of 2757 bp and encoded a polypeptide of 918 amino acids containing three CUB domains, an EGF domain, two IG domains, and a Tryp_SPC domain. In the phylogenetic tree, CgMASPL-2 was firstly clustered with Mytilus californianus McMASP-2-like, and then assigned into the invertebrate branch. CgMASPL-2 shared similar domains with M. californianus McMASP-2-like and Littorina littorea LlMReM1. CgMASPL-2 mRNA was expressed in all the tested tissues with the highest expression in haemolymph. CgMASPL-2 protein was mainly distributed in the cytoplasm of haemocytes. The mRNA expression of CgMASPL-2 increased significantly in haemocytes after Vibrio splendidus stimulation. The recombinant 3 × CUB-EGF domains of CgMASPL-2 displayed binding activities to diverse polysaccharides (lipopolysaccharide, peptidoglycan and mannose) and microbes (Staphylococcus aureus, Micrococcus luteus, Pichia pastoris, Vibrio anguillarum, V. splendidus and Escherichia coli). In anti-CgMASPL-2 treated oysters, the mRNA expressions of CgIL17-1 and CgIL17-2 in haemocytes decreased significantly after V. splendidus stimulation. The results indicated that CgMASPL-2 could directly sense microbes and regulate the mRNA expressions of inflammatory factors.


Asunto(s)
Crassostrea , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Animales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Crassostrea/genética , Filogenia , Factor de Crecimiento Epidérmico/genética , ARN Mensajero/genética , Hemocitos/fisiología , Inmunidad Innata/genética
7.
Fish Shellfish Immunol ; 138: 108856, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257569

RESUMEN

Caspases are cysteinyl aspartate-specific proteinases, playing critical roles in apoptotic pathway to induce apoptosis and inflammatory response. In this study, the expanded repertoire of Caspases was revealed in the Pacific oyster Crassostrea gigas, and a total of 30 Caspases were identified from the genomic and stress-induced transcriptomic databases of the Pacific oyster. They were clustered into CgCaspase-2/9, CgCaspase-8/10, CgCaspase-3/6/7, CgCaspase-Cg, and CgCaspase-L. CgCaspase-Cg subgroup was found to be specifically expanded after a positive selection in oyster with average Ka/Ks of 0.50. The mRNA expression of CgCaspase-Cg-5 was found to be obviously induced against various bacterial and viral stimulations or environmental stresses. The relative expression level of CgCaspase-Cg-5 in haemocytes increased and reached the peak at 6 h after Vibrio splendidus stimulation, which was 5.57-fold of that in the control group (p < 0.01). In the oysters whose CgCaspase-Cg-5 expression was knocked down, the mRNA expression of apoptosis-related genes including CgBcl2, CgBax, CgCaspase3 and CgCaspase9 changed significantly at 12 h after V. splendidus stimulation. The expression of CgBax, CgCaspase3 and CgCaspase9 decreased, which was 0.64-fold (p < 0.05), 0.53-fold (p < 0.05) and 0.62-fold (p < 0.01), while the expression of CgBcl2 increased, which was 2.81-fold (p < 0.01) of that in the EGFP-dsRNA group, respectively. Meanwhile, the apoptotic rate of haemocytes (1.90 ± 0.71%) significantly decreased compared to that in the EGFP-dsRNA group (5.40 ± 0.72%) (p < 0.05), and the histological damages of widened cell spacing, gill filament swelling and loose cytoplasm were observed in the CgCaspase-Cg-5-knockdown oysters after V. splendidus stimulation. Collectively, CgCaspase-Cg subgroup was specifically expanded in oyster and some bivalve species, and species-specific CgCaspase-Cg-5 regulated the mRNA expression of the apoptosis-related genes to induce haemocyte apoptosis in the early stage of immune response. This provided insight into the evolutionary and functional characteristics of Caspase repertoire in the Pacific oyster and highlighted the important role of CgCaspase-Cg-5 in the response to pathogen infection and environmental stresses.


Asunto(s)
Crassostrea , Inmunidad , Animales , Apoptosis , Crassostrea/genética , Caspasas/genética , Caspasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hemocitos , Inmunidad Innata/genética
8.
Fish Shellfish Immunol Rep ; 4: 100085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37065179

RESUMEN

Spleen tyrosine kinase (Syk) is reported to be involved in activating the autophagy. Recently, a homologue of Syk was identified from Pacific oyster Crassostrea gigas (defined as CgSyk). In the present study, the molecular characteristics of CgSyk and its regulation mechanism in autophagy were investigated in oyster C. gigas. The full-length cDNA of CgSyk was of 4566 bp with an open reading frame (ORF) of 1989 bp. CgSyk encoded a polypeptide of 662 amino acids, containing two Src homology 2 (SH2) domains and one tyrosine kinase catalytic (TyrKc) domain. The deduced amino acid sequence of CgSyk shared low similarity with the previously identified Syks from other species. In the phylogenetic tree, CgSyk was first clustered with Crassostrea virginica CvSyk, and then classified into a branch of invertebrate Syks. In CgSyk-RNAi oysters, the mRNA expressions of CgLC3, CgP62, CgBeclin-1 and CgATG5 in haemocytes decreased significantly at 12 h after Vibrio splendidus stimulation. At the same time, the abundance of CgLC3Ⅱ in haemocytes, and the autophagy rate of haemocytes in CgSyk-RNAi oysters decreased significantly at 12 h after V. splendidus stimulation. All the results collectively suggested that CgSyk regulated the autophagy through inducing the mRNA expressions of autophagy-related genes and the cleavage of CgLC3 to defend against bacterial invasion in oysters.

9.
Dev Comp Immunol ; 144: 104708, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37044269

RESUMEN

Immune inhibitory receptors are increasingly acknowledged as potent regulators of immune response, which inhibit the overactivation of immune system and play an important role in maintaining immune homeostasis. In the present study, a novel immunoglobulin superfamily member (CgIgIT2) was identified from the Pacific oyster, Crassostrea gigas. The protein sequence of CgIgIT2 contained one signal peptide, four Ig domains, one fibronectin type III domain, one transmembrane domain, and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and one immunoreceptor tyrosine-based switch motif (ITSM). The mRNA transcripts of CgIgIT2 were widely expressed in all the tested tissues, including haemolymph, gill, mantle, adductor muscle, labial palp, gonad and hepatopancreas, with the highest expression in haemolymph. The mRNA expressions of CgIgIT2 in haemocytes increased significantly at 24, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgIgIT2 protein were mainly detected in granulocytes of haemocytes, which were 1.27-fold and 2.15-fold (p < 0.05) higher than that of semi-granulocytes and agranulocytes, respectively. And CgIgIT2 was mainly located in the membrane and cytoplasm of haemocytes. The recombinant protein of CgIgIT2-4 × Ig (rCgIgIT2-4 × Ig) exhibited binding activity towards multiple pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN), mannose (MAN) and polyinosinic-polycytidylic acid (Poly (I: C)) with the highest affinity for LPS. rCgIgIT2-4 × Ig could also bind Gram-negative bacteria (V. splendidus, V. anguillarum, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), and fungi (Pichia pastoris). In the blocking assay with anti-CgIgIT2 antibody, the mRNA expressions of interleukins (CgIL17-1, CgIL17-3 and CgIL17-6) and tumor necrosis factors (CgTNF-1 and CgTNF-2) in haemocytes all increased significantly at 12 h after V. splendidus stimulation. These results suggested that CgIgIT2 could function as an inhibitor receptor to bind different PAMPs and microbes, as well as inhibit the mRNA expressions of multiple inflammatory cytokines in oysters.


Asunto(s)
Crassostrea , Citocinas , Humanos , Animales , Citocinas/genética , Citocinas/metabolismo , Inmunidad Innata/genética , Receptores de Reconocimiento de Patrones/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Lipopolisacáridos/metabolismo , Alineación de Secuencia , Receptores Inmunológicos/genética , Inmunoglobulinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hemocitos
11.
Fish Shellfish Immunol ; 133: 108556, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669600

RESUMEN

Ferroptosis is an iron and oxidative dependent form of cell death usually mediated by redox related molecules in vertebrates. In the present study, a glutathione peroxidase 4 (GPX4) and a solute carrier family 7 member 11 (SLC7A11, xCT) homologues were identified from the oyster Crassostrea gigas (designed as CgGPX4 and CgxCT), which contained a GSHPx domain and an AA_permease domain, respectively. The mRNA transcripts of CgGPX4 and CgxCT were expressed in all the examined tissues, including gill, gonad, adductor muscle, labial palp, mantle, hepatopancreas and haemocytes, with the highest expression in haemocytes. After erastin treatment, the rate of cell malformation and cell death increased significantly in haemocytes, and the mitochondrial atrophy, crest loss and fracture were observed in haemocytes. While the amount of Fe2+ and Malondialdehyde (MDA) increased significantly, the mRNA expressions of CgGPX4, CgxCT and voltage-dependent anion channel 2 (CgVDAC2) in haemocytes decreased significantly after erastin treatment. These results indicated that erastin was able to induce the ferroptosis of oyster haemocytes.


Asunto(s)
Crassostrea , Ferroptosis , Animales , Crassostrea/metabolismo , Proteínas Portadoras/metabolismo , ARN Mensajero/metabolismo , Hemocitos/metabolismo
12.
Fish Shellfish Immunol ; 132: 108478, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509414

RESUMEN

A TNF-α family member, CgTNF-2, was previously identified from the oyster Crassostrea gigas to involve in the antibacterial response. In the present study, the role of CgTNF-2 in mediating the proliferation of haemocytes was further explored. The mRNA expression of CgTNF-2 in granulocytes was significantly higher than that in semi-granulocytes and agranulocytes, and the percentages of CgTNF-2 antibody labeled cells in agranulocytes, semi-granulocytes and granulocytes were 19.15%, 40.25% and 94.07%, respectively. After the treatment with rCgTNF-2, the percentage of EdU+ cells in haemocytes increased significantly (1.77-fold, p < 0.05) at 6 h compared with that in rGST-treated group, and the mRNA expressions of CgRunx, CgCyclin A, CgCDK2 and CgCDC45 in haemocytes all increased significantly (p < 0.05), which were 1.94-fold, 2.13-fold, 1.97-fold, 1.76-fold of that in rGST-treated group, respectively. Meanwhile, the protein abundance of CgRunx and CgCyclin A in the haemocytes of oysters in the rCgTNF-2-treated group increased, and the percentage of PI+ haemocytes in S phase also increased significantly (2.19-fold, p < 0.05) compared with that in rGST-treated group. These results collectively confirmed that CgTNF-2 was highly expressed in granulocytes and involved in the proliferation of haemocytes by regulating the expressions of CgRunx and cell cycle related genes in C. gigas.


Asunto(s)
Crassostrea , Animales , Factor de Necrosis Tumoral alfa/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular , Ciclo Celular , Hemocitos , Inmunidad Innata/genética
13.
J Immunol ; 210(3): 245-258, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548464

RESUMEN

DM9 domain containing protein (DM9CP) is a family of newly identified recognition receptors exiting in most organisms except plants and mammals. In the current study, to our knowledge, a novel DM9CP-5 (CgDM9CP-5) with two tandem DM9 repeats and high expression level in gill was identified from the Pacific oyster, Crassostrea gigas. The deduced amino acid sequence of CgDM9CP-5 shared 62.1% identity with CgDM9CP-1 from C. gigas, and 47.8% identity with OeFAMeT from Ostrea edulis. The recombinant CgDM9CP-5 (rCgDM9CP-5) was able to bind d-mannose, LPS, peptidoglycan, and polyinosinic-polycytidylic acid, as well as fungi Pichia pastoris, Gram-negative bacteria Escherichia coli and Vibrio splendidus, and Gram-positive bacteria Staphylococcus aureus. The mRNA transcript of CgDM9CP-5 was highly expressed in gill, and its protein was mainly distributed in gill mucus. After the stimulations with V. splendidus and mannose, mRNA expression of CgDM9CP-5 in oyster gill was significantly upregulated and reached the peak level at 6 and 24 h, which was 13.58-fold (p < 0.05) and 14.01-fold (p < 0.05) of that in the control group, respectively. CgDM9CP-5 was able to bind CgIntegrin both in vivo and in vitro. After CgDM9CP-5 or CgIntegrin was knocked down by RNA interference, the phosphorylation levels of JNK and P38 in the MAPK pathway decreased, and the expression levels of CgIL-17s (CgIL-17-3, -4, -5, and -6), Cg-Defh1, Cg-Defh2, and CgMolluscidin were significantly downregulated. These results suggested that there was a pathway of DM9CP-5-Integrin-MAPK mediated by CgDM9CP-5 to regulate the release of proinflammatory factors and defensins in C. gigas.


Asunto(s)
Crassostrea , Integrinas , Animales , Integrinas/metabolismo , Crassostrea/genética , Secuencia de Aminoácidos , Bacterias Gramnegativas/fisiología , ARN Mensajero/genética , Hemocitos , Inmunidad Innata/genética , Mamíferos/genética
14.
Dev Comp Immunol ; 139: 104565, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36216083

RESUMEN

The complement system is an important immune defense mechanism that plays essential roles in both innate and adaptive immunity of vertebrates. Since complement components are identified in deuterostome and even primitive protostome species, the origin and evolution of complement system in invertebrates have been of great interest. Recently, research on the complement system in mollusc immunity has been increasing due to their importance in worldwide aquaculture, and their phylogenetic position. Complement components including C3, C1q domain containing protein (C1qDCP), C-type lectin (CTL), ficolin-like, mannose-binding lectin (MBL)-associated serine proteases like (MASPL), and factor B have been identified, suggesting the existence of complement system in molluscs. The lectin pathway has been outlined in molluscs, which is initiated by CTL with CCP domain and MASPL protein to generate C3 cleavage fragments. The molluscan C1qDCP exhibits the capability to bind human IgG, indicating the existence of possible C1qDCP-mediated activation pathway in molluscs. The activation of C3 regulates the expressions of immune effectors (cytokines and antibacterial peptides), mediates the haemocyte phagocytosis, and inhibits the bacterial growth. Some MACPF domain containing proteins may replace the missing terminal pathway in molluscs. This article provides a review of complement system in molluscs, including its components, activation mechanisms and functions in the immune response of molluscs.


Asunto(s)
Filogenia , Animales , Humanos
15.
Fish Shellfish Immunol ; 131: 757-765, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36280129

RESUMEN

Cysteinyl aspartate specific proteinase-3 (Caspase-3) is an important protein involved in the apoptosis and gasdermin E (GSDME)-mediated cell pyroptosis pathways in vertebrates. A Caspase-3 homologue (designated as CgCaspase-3) was previously identified as an immune receptor specific for lipopolysaccharide (LPS) to regulate apoptosis in the Pacific oyster Crassostrea gigas. In the present study, the binding activity of CgCaspase-3 to different pathogen associated molecular patterns (PAMPs) and its effects on CgGSDME translocation in haemocytes were further investigated in C. gigas. The mRNA expression of CgCaspase-3 could be detected in all the tested tissues, including hepatopancreas, labial palp, adductor muscle, gonad, gill, mantle and haemocytes, and it was highly expressed in labial palp, gonad, haemocytes, and adductor muscle. The mRNA expression of CgCaspase-3 in haemocytes increased significantly at 3, 24, 48 and 72 h after LPS stimulation, and it increased significantly at 6, 12, 24 and 48 h after Vibrio splendidus stimulation. The recombinant CgCaspase-3 displayed binding activity towards LPS, mannose (MAN), peptidoglycan (PGN), and polyinosinic-polycytidylic acid potassium salt (Poly (I:C)). The positive signals of CgGSDME on haemocyte membrane became stronger at 3 h after V. splendidus stimulation, compared with that of Seawater group, and the co-localization of CgCaspase-3 and CgGSDME was observed in the haemocyte membrane. After the injection of dsCgCaspase-3, the positive signals of CgGSDME on haemocyte membrane became weaker compared with that of EGFP-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgCaspase-3 was able to bind diverse PAMPs and activate the translocation of CgGSDME in haemocytes of oyster response against pathogen invasion.


Asunto(s)
Crassostrea , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Lipopolisacáridos/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos , Inmunidad Innata/genética , Hemocitos , ARN Mensajero/genética
16.
Pharmaceutics ; 14(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36145566

RESUMEN

As one of the most frequent complications of critical illness, acute lung injury (ALI) carries a high risk of clinical morbidity and mortality. Cepharanthine (CPA) has significant anti-inflammatory activity, however, due to poor water solubility, low bioavailability, and short half-life, it fails to provide effective clinical management measures. Here, we explored the flexibility of an erythrocyte-anchoring strategy using CPA-encapsulated chitosan-coating nanoparticles (CPA-CNPs) anchored onto circulating erythrocytes for the treatment of ALI. CPA-CNPs adhered to erythrocytes successfully (E-CPA-CNPs) and exhibited high erythrocyte adhesion efficiency (>80%). Limited toxicity and favorable biocompatibility enabled further application of E-CPA-CNPs. Next, the reticuloendothelial system evasion features were analyzed in RAW264.7 macrophages and Sprague-Dawley rats. Compared with bare CPA-CNPs, erythrocyte-anchored CNPs significantly decreased cellular uptake in immune cells and prolonged circulation time in vivo. Notably, the erythrocyte-anchoring strategy enabled CNPs to be delivered and accumulated in the lungs (up to 6-fold). In the ALI mouse model, E-CPA-CNPs attenuated the progression of ALI by inhibiting inflammatory responses. Overall, our results demonstrate the outstanding advantages of erythrocyte-anchored CPA-CNPs in improving the pharmacokinetics and bioavailability of CPA, which offers great promise for a lung-targeted drug delivery system for the effective treatment of ALI.

17.
Sci Rep ; 12(1): 12617, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871227

RESUMEN

Melia azedarach L. is an important economic tree widely distributed in tropical and subtropical regions of China and some other countries. However, it is unclear how the species' suitable habitat will respond to future climate changes. We aimed to select the most accurate one among seven data mining models to predict the current and future suitable habitats for M. azedarach in China. These models include: maximum entropy (MaxEnt), support vector machine (SVM), generalized linear model (GLM), random forest (RF), naive bayesian model (NBM), extreme gradient boosting (XGBoost), and gradient boosting machine (GBM). A total of 906 M. azedarach locations were identified, and sixteen climate predictors were used for model building. The models' validity was assessed using three measures (Area Under the Curves (AUC), kappa, and overall accuracy (OA)). We found that the RF provided the most outstanding performance in prediction power and generalization capacity. The top climate factors affecting the species' suitable habitats were mean coldest month temperature (MCMT), followed by the number of frost-free days (NFFD), degree-days above 18 °C (DD > 18), temperature difference between MWMT and MCMT, or continentality (TD), mean annual precipitation (MAP), and degree-days below 18 °C (DD < 18). We projected that future suitable habitat of this species would increase under both the RCP4.5 and RCP8.5 scenarios for the 2011-2040 (2020s), 2041-2070 (2050s), and 2071-2100 (2080s). Our findings are expected to assist in better understanding the impact of climate change on the species and provide scientific basis for its planting and conservation.


Asunto(s)
Melia azedarach , Teorema de Bayes , China , Cambio Climático , Minería de Datos , Ecosistema
18.
Front Cell Dev Biol ; 10: 885478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669507

RESUMEN

Mitochondrial selective autophagy, known as mitophagy, surveils the mitochondrial population by eliminating superfluous and/or impaired organelles to mediate cellular survival and viability in response to injury/trauma and infection. In this study, the components of the mitophagy pathway in the Pacific oyster Crassostrea gigas were screened from NCBI with reference to the protein sequences of the human mitophagy process. A total of 10 mitophagy process-related genes were identified from C. gigas, including NIX, FUNDC1, PHB2, Cardiolipin, P62, VDAC2, MFN2, PARL, MPP, and OPTN. They shared high similarities with their homologs in the human mitophagy pathway and were expressed in various tissues of C. gigas. After CCCP exposure, the fluorescence intensity of the mitochondrial probe JC-1 monomers increased significantly in hemocytes, while the fluorescence intensity of JC-1 aggregates decreased significantly. Meanwhile, the fluorescence of lysosomes was found to be co-localized with that of CgLC3 and mitochondria in CCCP-treated hemocytes. Double- and single-membrane-bound vacuoles resembling autophagic structures were observed in the hemocytes after CCCP exposure. The fluorescence intensity of JC-1 monomers and the abundance of CgLC3Ⅱ in hemocytes both increased after Vibrio splendidus exposure. At the same time, the green signals of CgLC3 were co-localized with red signals of the mitochondria, and the fluorescence intensity of autophagy increased significantly in hemocytes after V. splendidus exposure. The results confirmed the existence of a complete mitophagy pathway in mollusks for the first time, which was helpful for further study on the function of mitochondrial autophagy in mollusks.

19.
Int J Biol Macromol ; 211: 289-300, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35525493

RESUMEN

High-mobility group box 1 (HMGB1), a highly conserved nucleoprotein, functions in immune recognition, inflammation and antibacterial immunization in vertebrates. In the present study, the mediation mechanism of CgHMGB1 in activating MAPK and NF-κB/Rel signaling pathways to induce the expressions of immune effectors was investigated. CgHMGB1 mRNA was detected in all tested developmental stages from fertilized egg to D-larvae, with the higher expressions in 4 cells and 8 cells stages. CgHMGB1 proteins were mainly distributed in haemocyte granulocytes. The expressions of CgHMGB1 mRNA in haemocytes increased significantly after Vibrio splendidus stimulation, and CgHMGB1 protein translocated into the haemocyte cytoplasm and release into cell-free haemolymph. The phosphorylation of CgERK and CgP38 were induced, the nuclear translocation of CgRel were promoted, and the mRNA expressions of CgIL17-5 and Cgdefh2 increased significantly after rCgHMGB1 treatment. Obvious branchial swelling and cilium shedding were observed after rCgHMGB1 treatment. rCgHMGB1 exhibited binding activity to different polysaccharides, bacteria, and fungi. rCgHMGB1 also displayed obvious antibacterial activity to V. splendidus and E. coli. These results indicated that CgHMGB1 functioned as an immune recognition molecule to recognize various PAMPs and bacteria to induce the mRNA expressions of CgIL17-5 and Cgdefh2 via the activation of MAPK and NF-κB signaling pathways in oysters.


Asunto(s)
Crassostrea , Animales , Antibacterianos/metabolismo , Escherichia coli/genética , Hemocitos/metabolismo , Inmunidad Innata , FN-kappa B/metabolismo , ARN Mensajero/genética , Transducción de Señal
20.
Dev Comp Immunol ; 127: 104263, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563588

RESUMEN

Interleukin-17 (IL-17) is a classic pro-inflammatory cytokine that plays an important role in the immune and inflammatory response. In the present study, the sequence feature of CgIL17-5 and its function as a pro-inflammatory factor in inducing the mRNA expressions of downstream immune effectors were investigated in oyster Crassostrea gigas. There were two tightly folded alpha helixes and two pairs of antiparallel beta-pleated sheet in the amino acid sequence of CgIL17-5. The mRNA transcripts of CgIL17-5 were constitutively distributed in all the tested tissues, with the highest level in haemocytes. The mRNA expression level of CgIL17-5 in haemocytes increased significantly at 24 h after Vibrio splendidus stimulation. CgIL17-5 protein was mainly detected in granulocytes which were the main immunocompetent haemocytes in C. gigas. The phosphorylation of mitogen-activated protein kinases (CgJNK, CgERK and CgP38) and nuclear translocation of the transcription factors (CgRel and CgAP-1) in haemocytes were induced after the oysters received an injection of recombinant CgIL17-5 for 2 h. The mRNA expression levels of CgIL-17s, CgTNF-1, Cgdefh1 and Cgdefh2 increased significantly in haemocytes. At the same time, obvious branchial swelling and cilium shedding in gills were observed at 24 h after the oysters received an injection of rCgIL17-5. All the results collectively suggested that CgIL17-5 promoted the activation of CgMAPKs and the nuclear translocation of CgRel and CgAP-1 to promote the mRNA expressions of cytokines and antibacterial peptides.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Regulación de la Expresión Génica , Hemocitos , Inmunidad Innata/genética , Fosforilación , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...